
© 2012. Muzammil H Mohammed & Sultan Aljahdali. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 12 Issue 11 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

 By Muzammil H Mohammed & Sultan Aljahdali

Taif University, Taif, Saudi Arabia
Abstract - Software form typically contains a lot of contradiction and uniformity checkers help engineers find them. Even if
engineers are willing to tolerate inconsistencies, they are better off knowing about their existence to avoid follow-on errors
and unnecessary rework. However, current approaches do not detect or track inconsistencies fast enough. This paper
presents an automated approach for detecting and tracking inconsistencies in real time (while the model changes).
Engineers only need to define consistency rules-in any language-and our approach automatically identifies how model
changes affect these consistency rules. It does this by observing the behavior of consistency rules to understand how
they affect the model. The approach is quick, correct, scalable, fully automated, and easy to use as it does not require
any special skills from the engineers using it. We use this model to define generic prioritization criteria that are applicable
to GUI, Web applications and Embedded Model. We evolve the model and use it to develop a unified theory. Within the
context of this model, we develop and empirically evaluate several prioritization criteria and apply them to four stand-
alone GUI and three Web-based applications, their existing test suites and mainly embedded systems. In this model we
only run our data collection and test suite prioritization process on seven programs and their existing test suites. An
experiment that would be more readily generalized would include multiple programs of different sizes and from different
domains. We may conduct additional empirical studies with larger EDS to address this threat each test case has a
uniform cost of running (processor time) monitoring (human time); these assumptions may not hold in practice. Second,
we assume that each fault contributes uniformly to the overall cost, which again may not hold in practice.

GJCST-C Classification : D.2.5

Developing an Embedded Model for Test suite prioritization process to optimize consistency rules for inconsistencies detection and model changes

Strictly as per the compliance and regulations of:

Developing an Embedded Model for Test Suite Prioritization
Process to Optimize Consistency Rules for Inconsistencies
Detection and Model Changes

Developing an Embedded Model for Test Suite
Prioritization Process to Optimize Consistency
Rules for Inconsistencies Detection and Model

Changes
Muzammil H Mohammed α & Sultan Aljahdali σ

Abstract - Software form typically contains a lot of
contradiction and uniformity checkers help engineers find
them. Even if engineers are willing to tolerate inconsistencies,
they are better off knowing about their existence to avoid
follow-on errors and unnecessary rework. However, current
approaches do not detect or track inconsistencies fast
enough. This paper presents an automated approach for
detecting and tracking inconsistencies in real time (while the
model changes). Engineers only need to define consistency
rules - in any language - and our approach automatically
identifies how model changes affect these consistency rules. It
does this by observing the behavior of consistency rules to
understand how they affect the model. The approach is quick,
correct, scalable, fully automated, and easy to use as it does
not require any special skills from the engineers using it. We
use this model to define generic prioritization criteria that are
applicable to GUI, Web applications and Embedded Model.
We evolve the model and use it to develop a unified theory.
Within the context of this model, we develop and empirically
evaluate several prioritization criteria and apply them to four
stand-alone GUI and three Web-based applications, their
existing test suites and mainly embedded systems. In this
model we only run our data collection and test suite
prioritization process on seven programs and their existing test
suites. An experiment that would be more readily generalized
would include multiple programs of different sizes and from
different domains. We may conduct additional empirical
studies with larger EDS to address this threat each test case
has a uniform cost of running (processor time) monitoring
(human time); these assumptions may not hold in practice.
Second, we assume that each fault contributes uniformly to
the overall cost, which again may not hold in practice.

I. Introduction

here are lots of problems involving the consistency
of the software during the development cycle. A lot
of cost and investment is put forth to reduce the

inconsistency in the software which brings out a
consistent software. The main objective of our research
is in this area of identifying the inconsistencies in

Author α: Department of Information Technology College of Computers
and Information Technology Taif University, Taif, Saudi Arabia.

E-mail : m.muzammil@tu.edu.sa

Author σ

: Department of Computer Science College of Computers
and Information Technology Taif University, Taif, Saudi Arabia.

E-mail : Aljahdali@tu.edu.sa

software automatically using various tools and
techniques. Also we have hereby focused on the
automated model change identification which may also
help in identifying the inconsistencies automatically.

Determining the inconsistencies in software
automatically will definitely help in reducing the
complexity of software maintenance and as well as
enhances the performance of the software.

The main focus of the proposed system of

automating the consistency checking is on the UML
since UML is the basic for any software development.
When we track all the dynamic consistency changes
and the rule inconsistencies in the UML we can almost
very well say that the software inconsistencies are
tracked down, since the software depends on the UML.

In our proposed model of inconsistencies

tracking we have laid down the emphasis on the

UML

rule consistency, UML model changes,

Dynamic
constraints, meta model constraints,

etc.

To identify inconsistencies in an automatable

fashion we have devised and applied a view

integration

framework accompanied by a set of

activities and
techniques. Our view integration

approach exploits the

redundancy between views

which can be seen as
constraints. Our view

integration framework enforces

such constraints

and, thereby, the consistency across

views. In

addition to constraints and consistency rules,

our

view integration framework also defines what

information can be exchanged and how

information can

be exchanged. This is critical for

scalability and
automates ability.

We made use of many tools those analyses the

UML and the model to help us in figuring out all

the

inconsistencies and changes. The major tool

is UML
analyzer.

(UML/Analyzer is a synthesis and analysis tool

to support model-based software development. It

implements a generic view integration

framework which

supports automated model

transformation and
consistency checking within

UML object and class

diagrams as well as the

C2SADEL architectural
description language).

T

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

3

(
DDDD

)
C

20

12
Y
e
a
r

II. Consistency Checking and Rule
Analysis

a) Consistency checking
Consistency checking is a mechanism for

checking whether rules are semantically consistent.
Ambiguities can be found either in a single rule

or in a set of rules. For example:

• A single rule may contain selfcontradictory
conditions and therefore will never apply.

• Two rules may apply to the same object, and set a
given attribute to two different values. These rules
are conflicting.

Consistency checking goes beyond the simple
syntax of rules to consider semantics as well. That is,
how the rule behaves during execution. Using Rule
Studio, you can choose which checks are carried out.
Consistency checks can be categorized into two types:

Checks that analyze an individual rule. These
checks are activated when you build the rule and when
you run the Consistency checking analysis:
 Rules that are never selected
 Rules that never apply
 Rules with range violation

Checks that analyze rules in relation to other
rules. These checks are activated only when you run the
Consistency checking analysis.
 Rules with equivalent conditions
 Equivalent rules
 Redundant rules
 Conflicting and self-conflicting rules

Consistency checking reports problems on rules
If there is a rule flow in your rule project, it

reports problems on rules that are included in a rule
task, and that may be selected at runtime.

It only compares rules that may be in the same
task. In the case of a rule task with dynamic selection
filtering, the consistency checking mechanism takes into
account the rules that are potentially selected by this
task. A rule can be potentially selected when it cannot
be established that it definitely cannot be selected.

If there is no rule flow in your rule project, all the
rules in the project may be selected.

Consistency checking gives an indication of the
consistency of your rules but cannot identify all potential
problems. An empty Consistency checking report is
therefore not a guarantee that there are no problems in
the analyzed rules.

b) Rules that are never selected
Rules are reported as “never selected” when

they are not part of a rule task and cannot be selected at
runtime. For more information, see Rule selection and
Rule overriding.

c) Rules that never apply
This occurs when the conditions of the rule can

never be met.
Typically, the syntax of such rules is correct but

the rules contain common logic errors. For example:
The wrong operator is used to combine

condition statements, for example and instead of or: the
category of the customer is Gold and the category of the
customer is Platinum.

Values are inverted, for example, in the following
rule: the age of the customer is between 70 and 50.

Values in the conditions are not within the
permitted range.

d) Rules with range violation
In order to reduce the risk of errors, some

members can only be assigned values within a specified
range. For example, the yearly interest rate on a loan
may be limited to values between 0 and 10.

If a rule contains an action that tries to assign a
value that is not within the permitted range, Rule Studio
displays a range violation error in the report and in the
Rule Editor.

e) Rules with equivalent conditions

This occurs when two rules contain condition

parts that have the same meaning and their actions are
different although conflict.

Rules with equivalent conditions do not

necessarily represent an error situation, but they

may be

good candidates to be merged.

f)

Equivalent rules

Equivalent rules are reported when both their

conditions and actions are the same.

In the following example, Rule1 and Rule2 are

equivalent:

Rule

1

definitions

set minDiscount to 5

set ageDiscount to 10

if

the age of the borrower is more than 65

then

set the discount to minDiscount + ageDiscount

Rule

2

if

the age of the borrower is at least 66

then

set the discount to 15

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

4

(
DDDD

)
C

Although the syntax of these two rules is
different, rule analysis evaluates the numeric
expressions and reports that the rules are equivalent.
You can therefore delete one of them.

20

12
Y
e
a
r

Note
Equivalent rules often arise between a decision

table that you create and an existing rule.

g) Redundant rules

When two rules have the same actions, one of

them becomes redundant when its conditions are

included in the conditions of the other.

In the following example, the Else part of Rule2

makes Rule1 redundant:

Rule

1

if

the category of the customer is Gold

then

set the discount to 10

Rule

2

if

the category of the customer is Platinum

then

set the discount to 15

else

set the discount to 10

Although Rule1 is correct, it is redundant and

can therefore be deleted.

Note

Redundant rules often arise between

a decision

table that you create and an existing rule.

h)

Conflicting and self-conflicting rules

i.

Conflicting rules

Rules may conflict when the actions of two

different rules set a different value for the same

business

term (member). Conflicts occur in these

two rules in
circumstances in which the

conditions are equivalent or

cover the same

values.

Rule

1

if

the loan report is approved

and the amount of the

loan is at least 300 000

then

set the category of the borrower to Gold

Rule

2

if

the age of the latest bankruptcy of the borrower

is less

than 1

and the category of the borrower is not

Platinum

then

set the category of the borrower to No

Category

Rule1 and Rule2 will conflict when the loan

report is approved, the amount of the loan is 300000 (or
more), the borrower has not had a

bankruptcy in the last

year, and the category is

anything but Platinum. In these

specific

circumstances, the rules will set the category of

the borrower to different values.

Conflicting rules can be corrected by changing
the conditions, deleting one of the rules, or setting
different priorities on the rules.

ii. Self-conflicting rules
A rule is self-conflicting when two executions of

a rule assign different values to the same member. For
example, a self-conflicting rule:
may apply twice on a given working memory (and
ruleset parameters)
will set different values to a common attribute
For example:
if

the customer category is Gold
then

set the discount of the cart to the bonus points of the
customer

If there are two customer objects with different
bonus points in the working memory, the rule is
executed twice and a conflict occurs because the two
executions of the rule set different values to the discount
of the cart.

i) Decision table conflicts
To check decision tables, you need to enable

the option Include decision tables and decision trees in
the inter-rule checks.

This option allows you to check rules between
different decision tables or decision trees, but not within
a decision table or decision tree.

Consistency checking then handles decision
tables as follows:
It checks individual decision tables/trees for:
never applicable rules
rules with range violation

It checks between two elements. For example, it
checks lines between two decision tables/trees, or
between a decision table/tree and a BAL rule.

If you do not select this option, rule analysis
does not perform any overlapping, redundancy, or
conflict checks on decision tables or trees. If you select
this option, overlapping, redundancy, or conflict errors
are reported on decision tables or trees, except when
these errors occur within the same decision table or
tree.

III. Tool for Consistency Analysis and
Checking

a) UML/Analyzer
Model-Based Software Development is about

modeling real problems, solving the model problems,
and interpreting the model solutions in the real world.
This cycle places a major emphasis on transformation
and inconsistency detection between various
representations of software systems (e.g., models,
diagrams, source code, etc.). UML/Analyzer is a

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

5

(
DDDD

)
C

20

12
Y
e
a
r

synthesis and analysis tool to support model-based
software development. It implements a generic view
integration framework which supports automated model
transformation and consistency checking within UML
object and class diagrams as well as the C2SADEL
architectural description language.

The UML/Analyzer tool, integrated with IBM
Rational Rose&8482;, fully implements this approach. It
was used to evaluate 29 models with tens-of-thousands
of model elements, evaluated on 24 types of
consistency rules over 140,000 times. We found that the
approach provided design feedback correctly and
required, in average, less than 9ms evaluation time per
model change with a worst case of less than 2 seconds
at the expense of a linearly increasing memory need.
This is a significant improvement over the state-of-the-
art.

Figure 1: Software Development life cycle

b) UML/Analyzer Architecture
To identify inconsistencies in an automatable

fashion we have devised and applied a view integration
framework accompanied by a set of activities and
techniques. Our view integration approach exploits the
redundancy between views which can be seen as
constraints. Our view integration framework enforces
such constraints and, thereby, the consistency across
views. In addition to constraints and consistency rules,
our view integration framework also defines what
information can be exchanged and how information can
be exchanged. This is critical for scalability and
automate ability.

Figure 2 : UML Analyzer

c) UML/Analyser Tool Depicting the inconsistencies in
IBM Rational Rose ™

Our approach has the following activities:
1) Mapping: identifies and crossreferences

related modeling elements that describe overlapping
and thus redundant pieces of information. Mapping is
often done manually via naming dictionaries or
traceability matrices (e.g., trace matrices). Mapping
assists consistency checking by defining what to
compare.

2) Transformation: converts modeling elements
or diagrams into intermediate models in such a manner
that they (or pieces of them) can be understood easier
in the context of other diagram(s). Transformation
assists consistency checking by defining how to
compare.

3) Differentiation: compares model elements
and diagrams with intermediate models that were
generated through transformation where differences
indicate inconsistencies.

Figure 3 : UML Analyzer with interface

d) Illustration of the problem
The illustration in Fig. 1 depicts three diagrams

created with the UML [17] modeling tool IBM Rational
Software Modeler. The given model represents an early
design-time snapshot of a video-on-demand (VOD)
system [4]. The class diagram (top) represents the
structure of the VOD system: a Display used for
visualizing movies and receiving user input, a Streamer
for downloading and decoding movie streams, and a
Server for providing the movie data. In UML, a class’s
behavior can be described in the form of a statechart
diagram. We did so for the Streamer class (middle). The
behavior of the Streamer is quite trivial. It first
establishes a connection to the server and then toggles
Simplified UML model of the VOD system between the
waiting and streaming mode depending on whether it
receives the wait and stream commands.

The sequence diagram describes the process
of selecting a movie and playing it. Since a sequence
diagram contains interactions among instances of
classes (objects), the illustration depicts a particular
user invoking the select method on an object, called
disp, of type Display. This object then creates a new

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

6

(
DDDD

)
C

20

12
Y
e
a
r

object, called st, of type Streamer, invokes connect and
then wait.

When the user invokes play, object disp invokes
stream on object st. These UML consistency rules
describe conditions that a UML model must satisfy for it
to be considered a valid UML model. Fig. 2 lists 24 such
rules covering consistency, well-formedness, and best
practice criteria among UML class, sequence, and
statechart diagrams. The first four consistency rules are
elaborated on for better understanding. Note that these
consistency rules apply to UML only. For the other
modeling notations, different consistency rules were
needed, which are not described here.

Figure 4 : Class Diagram

A consistency rule may be thought of as a
condition that evaluates a portion of a model to a truth
value (true or false). For example, consistency rule 1
states that the name of a message must match an
operation in the receiver’s class.

If this rule is evaluated on the third message in
the sequence diagram (the wait message), then the
condition first computes operations ¼ message:
receiver: base: operations, where message.receiver is
the object st (this object is on the receiving end of the
message; see arrowhead), receiver.base is the class
Streamer (object st is an instance of class Streamer),
and base. operations is {stream(),wait()} (the list of
operations of the class Streamer). The condition then
returns true because the set of operation names
(operations> name) contains the message name wait.

IV. Implementation

a) Inconsistencies
We use the term inconsistency to denote any

situation in which a set of descriptions does not obey
some relationship that should hold between them. The
relationship between descriptions can be expressed as

a consistency rule against which the descriptions can be
checked. In current practice, some rules may be
captured in descriptions of the development process;
others may be embedded in development tools.
However, the majority of such rules are not captured
anywhere.

Here are three examples of consistency rules
expressed in English:
1. In a dataflow diagram, if a process is decomposed

in a separate diagram, the input flows to the parent
process must be the same as the input flows to the
child data flow diagram.

2. For a particular library system, the concept of an
operations document states that user and borrower
are synonyms. Hence, the list of user actions
described in the help manuals must correspond to
the list of borrower actions in the requirements
specification.

3. Coding should not begin until the Systems
Requirement Specification has been signed off by
the project review board. Hence, the program code
repository should be empty until the status of the
SRS is changed to “approved.”

Figure 5 :

Manage Inconsistency

In our framework, when you iterate through the

consistency management process,

you expand and
refine the set of consistency rules. You will

never obtain

a complete set of rules

covering all possible consistency

relationships in

a large project. However, the rule base

acts as a

repository for recording those rules that are

known or discovered so that they can be tracked

appropriately.

Consistency rules can emerge from several

sources:

•

Notation dentitions. Many notations have
welldefined

syntactic integrity rules. For example,

in

a strongly typed programming language, the

notation requires that the use of each variable be

consistent with its declaration.

•

Development methods. A method provides a

set

of notations, with guidance on how to use

them

together. For example, a method for designing
distributed systems might require that

for any pair

of communicating subsystems, the

data items to

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

7

(
DDDD

)
C

20

12
Y
e
a
r

be communicated must be defined consistently in
each subsystem interface.

• Development process models. A process model
 typically defines development steps, entry and
 exit conditions for those steps, and constraints on
 the products of each step.

Local contingencies.

Sometimes a consistency

relationship occurs
between descriptions, even

though the notation,

method, or process model

does not predetermine

this relationship.

Examples include words used as

synonyms, and

relationships between timing
values in parallel

processes.

•

Application domains. Many consistency rules
 arise from domain-specific constraints.

b)

Monitoring and diagnosing inconsistency

 With an explicit set of consistency rules,
 monitoring can be automatic and unobtrusive. If

certain

rules have a high computational overhead

for checking,

the monitoring need not be

continuous—the
descriptions can be checked at

specific points during

development, using a lazy

consistency strategy.

 Our approach defines a scope for each rule, so
 that each edit action need be checked only against

those rules that include in their scope the

locus of the

edit action.
 When you find an inconsistency, the diagnosis

 process begins. Diagnosis includes parts of a
 description have broken a consistency rule;

 •

identifying the cause of an inconsistency,

normally

by tracing back from the manifestation

to the cause;

and

•

classifying an inconsistency.
 Classification is an especially important stage in

 the process of selecting a suitable handling

strategy.

 Inconsistencies can be classified along a
number

of different dimensions, including the type of

 rule broken, the type of action that caused the
 inconsistency, and the impact of the

inconsistency.

 c)

Handling inconsistency
 The choice of an inconsistency-handling

strategy

depends on the context and the impact it has

on

other aspects of the development process.

Resolving

the inconsistency may be as simple as

adding or
deleting information from a software

description. But it

often relies on resolving

fundamental conflicts or making

important

design decisions. In such cases, immediate

 resolution is not the best option. You can ignore,

defer,

 circumvent, or ameliorate the

inconsistency.

 Sometimes the effort to fix an inconsistency is
 significantly greater than the risk that the

inconsistency

will have any adverse

consequences. In such cases,

you may choose to

ignore the inconsistency. Good
practice dictates

that such decisions should be revisited
as a

project progresses or as a system evolves.

Deferring the decision until later may provide

you with more time to elicit further information

to
facilitate resolution or to render the

inconsistency
unimportant. In such cases,

flagging the affected parts
of the descriptions is

important.

Sometimes software developers won’t regard a

reported inconsistency as an inconsistency. This

may be
because the rule is incorrect or because

the
inconsistency represents an exception to the

rule. In
these cases, the inconsistency can be

circumvented by
modifying the rule or by

disabling it for a specific
context.

Sometimes, it may be more cost-effective to

ameliorate an inconsistency by taking some steps

toward a resolution without actually resolving it.

This approach may include adding information

to the description that alleviates some adverse

effects of
an inconsistency and resolves other

inconsistencies as
a side effect.

 d)

Measuring inconsistency

For several reasons, measurement is central to

effective inconsistency management. Developers

often
need to know the number and severity of

inconsistencies in their descriptions, and how

various
changes that they make affect these

measures.
Developers may also use given a

choice, which is
preferred.

 Sometimes developers need to prioritize

 inconsistencies in different ways to identify

 inconsistencies that need urgent attention. They

may
also need to assess their progress by

measuring their
conformance to some predefined

development
standard or process model.

 The actions taken to handle inconsistency often

 depend on an assessment of the impact these

actions
have on the development project.

Measuring the impact
of inconsistency-handling

actions is therefore a key to
effective action in

the presence of inconsistency. You
also need to

assess the risks involved in either leaving
an

inconsistency

or handling it in a particular way.

 The 24 rules were chosen to cover the

needs of

our industrial partners. They cover a

significant set of

rules and we demonstrated that

they were handled
extremely efficiently. But it is

theoretically possible to

write consistency rules

in a no scalable fashion.

 Consistency rules for UML class, sequence,
and

state chart diagrams. Details sketched for first

three

rules only. Rules 7 and 8 are classical best

practice

rules (and not necessarily errors). Rules

9-25 are typical

UML well-formedness rules

defined in UML 1.3. Different

rules apply to

other modeling languages (e.g., Dopler).

e)

Dynamic Constraints

 The research community at large has

focused

on a limited form of consistency

checking by assuming

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

8

(
DDDD

)
C

20

12
Y
e
a
r

that only the model but not the constraints change (the
latter are predefined and existing approaches typically
require a complete, exhaustive reevaluation of the entire
model if a constraint changes!). The focus of this work is
on how to support dynamically changeable.

constraints – that is constraints that may be
added, removed, or modified at will without losing the
ability for instant, incremental consistency checking and
without requiring any additional, manual annotations.
Such dynamic.

Table 1 : Rules and Description

Constraints arise naturally in many domain
specific contexts In addition to meta model constraints,
this work also covers application specific model
constraints that are written from the perspective of a
concrete model at hand (rather than the more generic
meta model). We will demonstrate that model
constraints can be directly embedded in the model and
still be instantly and incrementally evaluated together
with meta model constraints based on the same
mechanism. For dynamic constraints, any constraint
language should be usable. We demonstrate that our
approach is usable with traditional kinds of constraint
languages (e.g., OCL [5]) and even standard
programming languages (Java or C#). Furthermore, our
approach is independent of the modeling language
used. We implemented our approach for UML 1.3, UML

2.1, Matlab/Stateflow and a modeling language for
software product lines.

f) Meta Model and Model Constraints (and Their
Instances)

Fig. 6 illustrates the relationships between the
meta model/model constraints and their instances.

Constraint = < condition, context element>
Meta Model Constraint: context element is

element of Meta model Constraint: context element is
element of model Meta model constraints are written
from the perspective of a Meta model element.

Many such constraints may exist in a meta
model. Their conditions are written using the vocabulary
of the meta model and their context elements are
elements of the meta model. For example, the context

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

9

(
DDDD

)
C

20

12
Y
e
a
r

element of constraint C1 in Fig. 3 is a UML Message (a
meta model element). This implies that this constraint
must be evaluated for every instance of a Message in a
given model. In Fig.3 there are three such messages.
Model constraints, on the other hand, are written from
the perspective of a model element (an instance of a
meta model element). Hence, its context element is a
model element.

Fig. 6 shows that for every meta model
constraint a number of constraint instances are
instantiated (top right) – one for each instance of the
meta model element the context element refers to. On
the other hand, a model constraint is instantiated exactly
once – for the model element it defines.

Constraint Instance = <constraint, model element >
While the context elements differ for model and

meta model constraints, their instances are alike: the
instances of meta model constraints and the instances
of model constraints have model elements as their
context element. The only difference is that a meta
model constraint results in many instances whereas a
model constraint results in exactly one instance. Since
the instances of both kinds of constraints are alike, our
approach treats them in the same manner.
Consequently, the core of our approach, the model
profiler with its scope elements and reevaluation
mechanism discussed above, functions identical for
both meta model constraints and model constraints as
is illustrated in Fig. 6. The only difference is in how
constraints must be instantiated.

Figure 6

:

Relation between meta model and

model
constraint definitions and constraints

This is discussed further below in more detail.

As discussed above, we support the definition
of

both meta model and model constraints in Java,

C#,
and OCL. These languages are vastly

different but our
approach is oblivious of these

differences because it
cares only about a

constraint’s evaluation behavior and
not its

definition. The key to our approach is thus in the

model profiling which happens during the

evaluation of
a constraint. During the evaluation,

a constraint

accesses model elements (and their

fields).

Figure 7 : Process model change

For example, if C1 defined in Fig. 7 is evaluated
on message turnOn() in Fig.7 (a constraint instance
denoted in short as <C1, turnOn>), the constraint starts
its evaluation at the context element – the message. It
first accesses the receiver object light and asks for the
base class of this object, WorkroomLight. Next, all
methods of this class are accessed ({isOn, turnOn,
turnOff, setLevel}) and their names are requested. This
behavior is observed and recorded by the model
profiler. We define the model elements accessed during
the evaluation of a constraint as a scope of that
constraint. Our approach then builds up a simple
database that correlates the constraint instances with
the scope elements they accessed (<Model Element,
Constraint Instance> pairs) with the simple implication
that a constraint instance must be reevaluated if and
only if an element in its scope changes:

ScopeElements(Constraint Instance)=Model
Elements accessed during Evaluation ReEvaluated
Constraints (ChangedElement) = all CI where Scope
Elements(CI) includes ChangedElement.

Next, we discuss the algorithm for handling
model changes analogous to the discussion above.
Thereafter, we discuss the algorithm for handling
constraint changes which is orthogonal but similar in
structure.

g) Model Change
If the model changes then all affected constraint

instances must be re-evaluated. Above we discussed
that our approach identifies all affected constraint
instances through their scopes, which are determined
through the model profiler. In addition to the model
profiler, we also require a change notification
mechanism to know when the model changes.
Specifically, we are interested in the creation, deletion,
and modification of model elements which are handled
differently. Fig. 7 presents an adapted version of the
algorithm for processing model changes published in
[10]. If a new model element is created then we create a
constraint instance for every constraint that has a type of
context element equal to the type of the created model
element. The constraint is immediately evaluated to
determine its truth value. If a model element is deleted
then all constraint instances with the same context
element are destroyed. If a model element is changed
then we find all constraint instances that contain the
model element in their scope and reevaluate them. A

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

10

(
DDDD

)
C

20

12
Y
e
a
r

model change performed by the user typically involves
more than one element to be changed at the same time
(e.g. adding a class also changes the ownedElements
property of the owning package). We start the re-
evaluation of constraints only after all changes
belonging to a group are processed, i.e. similar to the
transactions concept known in databases. Since the
model constraints and meta model constraints are alike,
our algorithm for handling model changes remains the
same.

processModelChange(changedElement)
if changedElement was created for every definition d
where type(d.contextElement)=type(changedElement)
constraint = new <d, changedElement>
evaluate constraint
else if changedElement was deleted
for every constraint where
constraint.contextElement=changedElement
destroy <constraint, changedElement>
for every constraint where constraint.scope
contains changedElement
evaluate <constraint, changedElement>

h) Constraint Change
With this paper, we introduce the ability to

dynamically create, delete, and modify constraints (both
meta model and model constraints). The algorithm for
handling a constraint change is presented in Fig. 8. If a
new constraint is created then we must

Instantiate its corresponding constraints:
1) for meta model constraints, one constraint is

instantiated for every model element whose type
is equal to the type of the constraint’s context
element. For example, if the meta model
constraint C1 is created a new (Fig. 3) then it is
instantiated three times – once for each message
in Fig.3 (<C1, getDevices>, <C1, press>, <C1,
turnOn>) because C1 applies to UML messages
as defined in its context element.

2) for model constraints, exactly one constraint is
instantiated for the model element of the
constraint’s context element. For example, if the
model constraint C4 is defined anew (Fig. 3) then
it is instantiated once for the
WorkroomThermostat as defined in Fig.2 (<C4,
workroomThermostat>) because this constraint
specifically refers to this model element in its
context. Once instantiated, the constraints are
evaluated immediately to determine their truth
values and scopes. If a constraint is deleted then
all its instances are destroyed. If a constraint is
modified all its constraints are re-evaluated
assuming the context element stays the same. If
the context element is changed or the constraint

is changed from a meta model to a model
constraint or vice versa, then the change is
treated as the deletion and re-creation of a
constraint (rather than its modification).

processConstraintChange(changedDefinition)
if changedDefinition was created for every
modelElement of type/instance
changedDefinition.contextElement

constraint = new <changedDefinition,
modelElement>

evaluate constraint
else if changedDefinition was deleted

for every constraint of changedDefinition,
destroy constraint
else if condition of changedDefinition was
modified

for every constraint of changedDefinition,
evaluate constraint
else

for every constraint of changedDefinition,
destroy constraint

for every modelElement of type/instance
changedDefinition.contextElement

constraint = new <changedDefinition,
modelElement>
evaluate constraint

Figure 8 : Algorithm for processing a Constraint change

instantly

V. Test Results

a) Computational Scalability

We applied our instant consistency checking

tool (the Model/Analyzer) to the 34 sample models and
measured the scope sizes S size and the ACRI by

considering all possible model changes. This was done
through automated validation by systematically
changing all fields of all model elements. In the

following, we present empirical evidence that S size and
ACRI are small values that do not increase with the size
of the model.

We expected some variability in Ssize

because

the sample models were very diverse

in contents,
domain, and size. Indeed, we

measured a wide range of

values between the

smallest and largest Ssize
(average/max), but

found that the averages stayed

constant with

the size of the model. Fig. 9 depicts the

values for Ssize relative to the model sizes for

the 34

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

11

(
DDDD

)
C

20

12
Y
e
a
r

sample models. The figure depicts each model as a
vertical range (average to 98 percent maximum), where
the solid dots are the average values for any given
model. Notice the constant, horizontal line of average
scope sizes.

The initial, one-time cost of computing the truth
values and scopes of a model is thus linear with the size

of the model and the number of rule types OðRT+ Msize
Þ because Ssize is a small constant and constants are
ignored for computational complexity.

To validate the recurring computational cost of
computing changed truth values and scopes, we next
discuss how many CRIs must be evaluated with a single
change (ACRI). Since the scope sizes were constant, it
was expected that the ACRI would be constant also (i.e.,
the likelihood for CRIs to be affected by a change is
directly proportional to the scope size). Again, we found
a wide range of values for ACRI across the many diverse
models but confirmed that the averages stayed constant
with the size of the model. Fig. 10 depicts the average
ACRI through solid dots and their98 percent maximums.

ACRI was computed by evaluating all CRIs and
then measuring in how many scopes each model
element appeared. The figure shows that in some
cases, many CRIs had to be evaluated (hundreds and
more). But the average values reveal that most changes
required few evaluations (between 3 and 11 depending
on the model).

Fig. 9

:

CRI scope sizes remain constant

with model

sizes

It depicts the average cost of evaluating a

model change based on the type of change.

We see

that a change t o the association field of

an
AssociationEnd was the most expensive

kind of change,

with over 4 ms reevaluation

cost, on average. A
message name change

(as was used several times in

this paper)

was comparatively cheap, with 0.12 ms to

reevaluate, on average. First and foremost,

we note that

all types of model changes are

quite reasonable to
reevaluate. This implies

that irrespective of how often

certain

types of changes happen, our approach

performs.

Fig. 10 :

Few consistency rule instances are

affected by
a model change

Fig. 11 : The most expensive types of model changes to
evaluate and the likelihoods of these changes occurring

Well on all of them. However, not all changes
are equally likely and we thus investigated the likelihood
of these most expensive types of model changes. For 8
out of the 34 models, we had access to multiple model

Previously, we mentioned that most changes

required very little reevaluation time and that there were
very rare outliers (0.00011 percent of changes with
evaluation time >100 ms). The reason for this is obvious
in Fig. 12, where we see that it is exponentially unlikely
for CRIs to have larger scope sizes (Fig. 12a) or for
changes to affect many CRIs (Fig. 12b). We show this
datum to exemplify how similar the 34 models are in that
regard, even though these models are vastly different in
size, complexity, and domain. Fig. 12a depicts for all 34
models separately what percentage of CRIs (y-axis) had
a scope of <¼ 5; 10; 15; . . . scope elements (x-axis).

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

12

(
DDDD

)
C

20

12

versions - covering 4,075 changes across them. Fig.
11b depicts that the model changes were unevenly
distributed across the types, but as was expected, there
is no single (or few) dominant kinds of model changes.
Indeed, the most expensive types of model changes
never occurred.

Y
e
a
r

The table shows that over 95 percent of all CRIs
accessed less than 15 fields of model elements (scope
elements). Fig. 12b depicts for all 34 models separately
what percentage of changes (yaxis) affected <¼ 2; 4; 6;
. . . CRIs. The table shows that 95 percent of all changes
affected fewer than 10 CRIs (ACRI).

The data thus far considered a constant number
of consistency rules (24 consistency rules). However,
the number of consistency rules is variable and may
change from model to model or domain to domain.
Clearly, our approach (or any approach to incremental
consistency checking) is not amendable to arbitrary
consistency rules. If a rule must investigate all model
elements, then such a rule’s scope is bound to increase
with the size of the model. However, we demonstrated
on the 24 consistency rules that

Fig.12. (a) : The number of model elements accessed

by constraints and (b) the number of constraints
affected by changes as percentages relative to

thresholds

Rules typically are not global; they are, in fact,
surprisingly local in their investigations. This is
demonstrated in Fig. 13, which depicts the cost of
evaluating changes for each consistency rule
separately. Still, each consistency rule takes time to
evaluate and Fig. 13 is thus an indication of the increase
in evaluation cost in response to adding new
consistency rules.

We see that the 24 consistency rules took, on
average, 0.004-0.21 ms to evaluate with model
changes. Each new consistency rule thus increases the
evaluation time of a change by this time (assuming that
new consistency rules are similar to the 24 kinds of rules
we evaluated). The evaluation time thus increases
linearly with the number of consistency rules (RT#).

It is important to note that the evaluation was
based on consistency rules implemented in C#. Rules

implemented in Java were slightly slower to evaluate but
rules implemented in OCL [38] were comparatively
expensive due to the high cost of interpreting them.

Fig. 13 : The cost of adding a consistency rule

Fig. 14 : Memory cost increases linearly with model size

b) Positive result regarding the memory cost and
usability

i. Memory Cost
On the downside, our approach does require

additional memory for storing the scopes. Fig. 14
depicts the linear relationship between the model size
and this memory cost. It can be seen that the memory
cost rises linearly. This should not be surprising given
that the scope sizes are constant with respect to the
model size but the number of CRIs increases linearly. As
with the evaluation time, this cost also increases with the
number of consistency rules (RT#). The memory cost is
thus RT# + Ssize . For scalability, this implies a quite
reasonable trade-off between the extensive performance
gains over a linear (and thus scalable) memory cost. To
put this rather abstract finding into a practical
perspective, the scope is maintained as a simple hash
table referencing the impacted CRIs in form of arrays.
With the largest model having over 400,000 scope
elements, each of which affects fewer than 10 CRIs, the
memory cost is thus equivalent to 400,000 arrays of
fewer than 10 CRIs each- quite manageable with today’s
computing resources. The memory cost stays the same
if the scope is stored persistently, in which case the
recomputation of the scope upon model load is no
longer required.

ii. Usability
One key advantage of our approach is that

engineers are not limited by the modeling language or
consistency rule language. We demonstrated this by
implementing our approach on UML 1.3, UML 2.1,
Matlab/Stateflow, and Dopler Product Line, and using a
wide range of languages to describe consistency rules

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

13

(
DDDD

)
C

20

12
Y
e
a
r

(from Java, C# to the interpreted OCL). But, most
significantly, engineers do not have to understand our
approach or provide any form of manual annotations (in
addition to writing the consistency rule) to use it. These
freedoms are all important for usability.

This paper does not address how to best
visualize inconsistencies graphically. Much of this
problem has to do with human-computer interaction and
future work will study this. This paper also does not
address downstream economic benefits: For example,
how does quicker (instant) detection of inconsistencies
really benefit software engineering at large. How many p
roblems are avoided, how much less does it cost to fix
an error early on as compared to later on? These
complex issues have yet to be investigated.

However, as an anecdotal reference, it is worth
pointing out that nearly all programming environments
today support instant compilation (and thus syntax and
semantic checking), which clearly benefits
programmers. We see no reason why these benefits
would not apply to modeling.

VI. Conclusion

The main issues addressed in this paper
includes – identifying the inconsistencies correctly and
quickly in an automated fashion by reducing the
complexity, cost and the effort Next, to evaluate the
consistency rules which are not necessarily to be written
in special language and special annotations our
approach used a form of profiling to observe the
behavior of the consistency rules during evaluation. We
demonstrated on 34 large-scale models that the
average model change cost 1.4 ms, 98 percent of the
model changes cost less than 7 ms, and that the worst
case was below 2 seconds. It is very significant to
understand that our approach maintains a separate
scope of model elements for every application
(instance) of a consistency rule. This scope is computed
automatically during evaluation and used to determine
when to reevaluate the rule. In the case of an
inconsistency, this scope tells the engineer all of the
model elements that were involved. Moreover, if an
engineer should choose to ignore an inconsistency (i.e.,
not resolve it right away), an engineer may use the
scopes to quickly locate all inconsistencies that directly
relate to any part of the model of interest. This is
important for living with inconsistencies but it is also
important for not getting overwhelmed with too much
feedback at once.

This paper significantly identifies the dynamic
model changes and a wide variety of consistency rules
and the proposals were made for automatic detection
and tracking of those inconsistencies and model
changes that are static as well as dynamic considering
also the cost and the efficiency factors of the automated
system that is to be inbuilt as an embedded system to

perform the task of automatic detection and embarking
techniques to solve the inconsistencies and the model
changes in any software development process by using
the UML diagram as the base and UML analyzer for
evaluation of the constraints and the results are then
processed for further actions.

VII. Future Work

We cannot guarantee that all consistency rules
can be evaluated instantly. The 24 rules of our study
were chosen to cover the needs of our industrial
partners. They cover a significant set of rules and we
demonstrated that they were handled extremely
efficiently. But it is theoretically possible to write
consistency rules in a nonscalable fashion, although it
must be stressed that of the hundreds of rules known to
us, none fall into this category. It is future work to
discuss how to best present inconsistency feedback
visually to the engineer. Also, the efficiency of our
approach depends, in part, on how consistency rules
are written.

References Références Referencias

1. U.A. Acar, A. Ahmed, and M. Blume, “Imperative
Self-Adjusting Computation,” Proc. 35th ACM
SIGPLAN-SIGACT Symp. Principles of Programming
Languages, pp. 309-322, 2008.

2. R. Balzer, “Tolerating Inconsistency,” Proc. 13th Int’l
Conf. Software Eng., pp. 158-165, 1991.

3. B. Belkhouche and C. Lemus, “Multiple View
Analysis and Design,” Proc. Int’l Workshop Multiple
Perspectives in Software Development, 1996.

4. X. Blanc, I. Mounier, A. Mougenot, and T. Mens,
“Detecting Model Inconsistency through Operation-
Based Model Construc- tion,” Proc. 30th Int’l Conf.
Software Eng., pp. 511-520, 2008.

5. B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K.
Clark, E. Horowitz, R. Madacy, D. Reifer, and B.
Steece, Software Cost Estimation with COCOMO II.
Prentice Hall, 2000.

6. L.C. Briand, Y. Labiche, and L. O’Sullivan, “Impact
Analysis and Change Management of UML
Models,” Proc. Int’l Conf. Software Maintenance, p.
256, 2003.

7. L.A. Campbell, B.H.C. Cheng, W.E. McUmber, and
K. Stirewalt, “Automatically Detecting and
Visualising Errors in UML Diagrams,” Requirements
Eng. J., vol. 7, pp. 264-287, 2002.

8. B.H.C. Cheng, E.Y. Wang, and R.H. Bourdeau, “A
Graphical Environment for Formally Developing
Object-Oriented Software,” Proc. Sixth Int’l Conf.
Tools with Artificial Intelligence, pp. 26-32,1994.

9. D. Dhungana, R. Rabiser, P. Gru¨ nbacher, K.
Lehner, and C. Federspiel, “DOPLER: An Adaptable
Tool Suite for Product Line Engineering,” Proc. 11th
Int’l Software Product Line Conf., pp. 151-152, 2007.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

14

(
DDDD

)
C

20

12
Y
e
a
r

10. S. Easterbrook and B. Nuseibeh, “Using ViewPoints
for Incon- sistency Management,” IEE Software Eng.
J., vol. 11, pp. 31-43, 1995.

11. A. Egyed, “Automated Abstraction of Class
Diagrams,” ACM Trans. Software Eng. And
Methodology, vol. 11, pp. 449-491, 2002.

12. A. Egyed, “Instant Consistency Checking for the
UML,” Proc. 28th Int’l Conf. Software Eng., pp. 381-
390, 2006.

13. A. Egyed, “Fixing Inconsistencies in UML Design
Models,” Proc. 29th Int’l Conf. Software Eng., pp.
292-301, 2007.

14. A. Egyed and B. Balzer, “Integrating COTS Software
into Systems through Instrumentation and
Reasoning,” Int’l J. Automated Software Eng., vol.
13, pp. 41-64, 2006.

15. A. Egyed, E. Letier, and A. Finkelstein, “Generating
and Evaluating Choices for Fixing Inconsistencies in
UML Design Models,” Proc. 23rd Int’l Conf.
Automated Software Eng., 2008.

16. W. Emmerich, “GTSL—an Object-Oriented
Language for Specification of Syntax Directed
Tools,” Proc. Eighth Int’l Workshop Software
Specification and Design, pp. 26-35, 1996.

17. S. Fickas, M. Feather, and J. Kramer, Proc. ICSE-97
Workshop Living with Inconsistency, 1997.

18. A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh, “Inconsistency Handling in Multi-
Perspective Specifications,” IEEE Trans. Software
Eng., vol. 20, pp. 569-578, 1994.

19. C. Forgy, “Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem,”
Artificial Intelligence, vol. 19, pp. 17-37, 1982.

20. I. Groher, A. Reder, and A. Egyed, “Instant
Consistency Checking of Dynamic Constraints,”
Proc. 12th Int’l Conf. Fundamental Approaches to
Software Eng., 2010.

21. J. Grundy, J. Hosking, and R. Mugridge,
“Inconsistency Manage- ment for Multiple-View
Software Development Environments,” IEEE Trans.
Software Eng., vol. 24, no. 11, pp. 960-981, Nov.
1998.

22. A.N. Habermann and D. Notkin, “Gandalf: Software
Development Environments,” IEEE Trans. Software
Eng., vol. 12, no. 12, pp. 1117-1127, Dec. 1986.

23. S.M. Kaplan and G.E. Kaiser, “Incremental Attribute
Evaluation in Distributed Language-Based
Environments,” Proc. Fifth Ann. Symp. Principles of
Distributed Computing, pp. 121-130, 1986.

24. M. Lee, A.J. Offutt, and R.T. Alexander, “Algorithmic
Analysis of the Impacts of Changes to Object-
Oriented Software,” Proc. 34th Int’l Conf.
Technology of Object- Oriented Languages and
Systems, pp. 61-70, 2000.

25. M. Lindvall and K. Sandahl, “Practical Implications
of Trace- ability,” J. Software—Practice and
Experience, vol. 26, pp. 1161-1180, 1996.

26. A.K. Mackworth, “Consistency in Networks of
Relations,” J. Artificial Intelligence, vol. 8, pp. 99-
118, 1977.

27. C. Nentwich, L. Capra, W. Emmerich, and A.
Finkelstein, “xlinkit: A Consistency Checking and
Smart Link Generation Service,” ACM Trans. Internet
Technology, vol. 2, pp. 151-185, 2002.

28. C. Nentwich, W. Emmerich, and A. Finkelstein,
“Consistency Management with Repair Actions,”
Proc. 25th Int’l Conf. Software Eng., pp. 455-464,
2003

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

15

(
DDDD

)
C

20

12
Y
e
a
r

This page is intentionally left blank

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

16

(
DDDD

)
C

20

12
Y
e
a
r

	Developing an Embedded Model for Test Suite PrioritizationProcess to Optimize Consistency Rules for InconsistenciesDetection and Model Changes
	Author's
	I. Introduction
	II. Consistency Checking and RuleAnalysis
	a) Consistency checking
	b) Rules that are never selected
	c) Rules that never apply
	d) Rules with range violation
	e) Rules with equivalent conditions
	f) Equivalent rules
	g) Redundant rules
	h) Conflicting and self-conflicting rules
	i. Conflicting rules
	ii. Self-conflicting rules

	i) Decision table conflicts

	III. Tool for Consistency Analysis andChecking
	a) UML/Analyzer
	b) UML/Analyzer Architecture
	c) UML/Analyser Tool Depicting the inconsistencies inIBM Rational Rose
	d) Illustration of the problem

	IV. Implementation
	a) Inconsistencies
	b) Monitoring and diagnosing inconsistency
	c) Handling inconsistency
	d) Measurin g inconsistency
	e) Dynamic Constraints
	f) Meta Model and Model Constraints (and TheirInstances)
	g) Model Change
	h) Constraint Change

	V. Test Results
	a) Computational Scalability
	b) Positive result regarding the memory cost andusability
	i. Memory Cost
	ii. Usability

	VI. Conclusion
	VII. Future Work
	References Références Referencias

